Journal of Organometallic Chemistry, 231 (1982) C17-C20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

DARSTELLUNG VON 2,3,4,5-TETRAKIS(DIMETHYL)SULFOCYCLO-PENTASILAN UND 2,3,4,5-TETRAKIS(DIMETHYL)SELENACYCLOPENTA-SILAN

EDWIN HENGGE* und HANS GEORG SCHUSTER

Institut für Anorganische Chemie der Technischen Universität Graz, Stremayrgasse 16, A-8010 Graz (Österreich)

(Eingegangen den 17. Februar 1982)

Summary

Octamethylcyclotetrasilan reacts with elemental sulfur or selenium in benzene at 80°C to give the five-membered ring products, $cyclo-(Me_2Si)_4S$ and $cyclo-(Me_2Si)_4Se$.

Während bei der Darstellung und Untersuchung der Eigenschaften fünf- und sechsgliedriger cyclischer Permethylsilane in den letzten Jahren eine Reihe von Fortschritten erzielt wurde und ihre spektroskopischen Eigenschaften (²⁹Si-NMR-, IR- und Raman-Spektren) diskutiert worden sind [1], stehen die Untersuchungen von Eigenschaften und Reaktivität des permethylierten Cyclotetrasilans noch weitgehend am Anfang. Da unlängst von uns gezeigt werden konnte, dass unter bestimmten Reaktionsbedingungen halogenierte Cyclosilane in befriedigenden Ausbeuten mit Zinkdimethyl zu den entsprechenden Methylcyclosilanen reagieren [2,3], stehen diese Substanzen jetzt in ausreichender Menge zur Verfügung, so dass weitere Reaktionen an ihnen untersucht werden können. Nachdem in einer kürzlich erschienenen Arbeit die Darstellung von cyclo-(Me₂Si)₅Se und cyclo-(Me₂Si)₅S aus (Me₂Si)₅ und elementarem Schwefel bzw. Selen in Decalin bei 190°C beschrieben wurde [4], schien es von Interesse, ob das relativ gespannte System des Si₄ Me₈-Rings ähnlich, unter Bewahrung der Ringstruktur, zu einem cyclo-(Me₂Si)₄X (X = S, Se) reagiert, oder ob es zu einer Entstehung der Sechsringe $[(Me_2Si)_2X]_2$ oder anderer Produkte kommen würde. Für die Darstellung von (Me₂Si)₄X mussten allerdings mildere Reaktionsbedingungen gewählt werden, da (Me₂Si)₄ empfindlicher ist als (Me₂Si)₅ und durch den Einfluss von Wärme leicht zerfällt. Als zielführend erwies sich nun die Darstellung der Heterocyclen in Benzol bei 80°C und mit einem geringen Überschuss an gepulvertem, elementarem Schwefel oder Selen.

0022-328X/82/0000-0000/\$02.75 © 1982

© 1982 Elsevier Sequoia S.A.

Die Abtrennung der so erhaltenen Produkte vom Reaktionsrückstand erfolgte jeweils durch fraktionierte Kondensation bzw. Sublimation. Es zeigte sich, dass sowohl mit S wie auch mit Se eine fast quantitative Ausbeute an den erwarteten Fünfringsystem Me₈Si₄S und Me₈Si₄Se eintritt. Der dazu erforderliche Abbau von S₈ bzw. des Se-Moleküls Se₈ muss dabei offensichtlich in sehr definierter Weise unter gleichzeitiger Ringöffnung des Si₄-Ringes erfolgen. Der nähere Reaktionsmechanismus ist noch unbekannt.

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluss von Sauerstoff und Luftfeuchtigkeit durchgeführt, die verwendeten Apparaturen mehrmals evakuiert und mit trockenem Stickstoff belüftet. Lösungsmittel wurden durch Kochen über LiAlH₄ oder anderen Trockenmitteln, unter Schutzgas, von Feuchtigkeitsspuren befreit.

Zur Darstellung wurden 2.2 g (10 mmol) (Me_2Si)₄ in Benzol gelöst und mit 12 mmol Schwefel (S_2) bzw. Selen (rote, glasige Modifikation) versetzt und unter Rühren ca. 7 h lang auf Rückfluss erhitzt. Nachdem sich das Reaktionsgemisch auf Raumtemperatur abgekühlt hatte, wurde das Lösungsmittel im Vakuum abgezogen und aus dem Rückstand (Me_2Si)₄S durch fraktionierte Kondensation und (Me_2Si)₄Se durch Sublimation bei Ölpumpenvakuum in nahezu quantitativen Ausbeuten erhalten.

TABELLE 1

(Me ₂ Si) ₄ S		(Me ₂ Si) ₄ Se		Zuordnung	
Raman (fl.)	IR (Nujol)	Raman (fest)	IR (Nujol)		
	845 (sh)				
	835 s		838 vs (br)		
	804 vs (br)		804 vs (br)	O(CH)	
	776 s		778 m-s	p(on ₃)	
	762 s		756 m-s		
729 vw	731 s	730 m	734 s		
691 (sh)	692 m	,	691 s		
671 s	670 (sh)	671 s) " " (SiC)	
	660 s		659 s	s, ras(sic ₂)	
	654 (sh)		649 s)	
633 w		631 w		N Contraction of the second se	
483 w	487 s	487 w			
430 w	436 m	459 m	440 m	/	
		404 w	408 m	ν (SiSi)	
381 w		395 w		$\rangle \nu(SiS)$	
358 vs		368 s	348 m	v(SiSe)	
		340 (sh)	335 w		
		337 s			
320 w		312 m			
250 w		257 w			
231 m					
225 m				$\rho, \delta, \gamma, \tau$ (SiC ₂)	
204 (sh)					
179 vs (br)		185 vs (br)			
158 s		166 sh		j –	

SCHWINGUNGSSPEKTREN VON (Me_2Si)₄S UND (Me_2Si)₄Se IN cm⁻¹ (Da die IR- und Raman-Spektren analoger Ringverbindungen im Bereich zwischen 4000 und 800 cm⁻¹ ähnlich sind, wird hier nur der langwellige Bereich angegeben.)

Eigenschaften. (Me₂Si)₄S ist eine farblose, klare Flüssigkeit, luft- und feuchtigkeitsempfindlich. vom Kp. $35^{\circ}C/4 \times 10^{-3}$ Torr. Analyse: Gef.: C, 36.02; H, 8.98; Si, 41.90; S, 11.85. C₈H₂₄Si₄S ber.: C, 36.30; H, 9.14; Si, 42.44; S, 12.14%. ¹H-NMR (Me₂Si)₄S, C₆D₆/TMS: zwei Singuletts bei δ 0.372 und 0.232 ppm im erwarteten Verhältnis von 1/1. ²⁹Si-NMR (17.88 MHz): (Me₂Si)₄S, C₆D₆/TMS extern, durch Breitbandentkopplung, inversed gated, zwei Singuletts bei δ 8.702 und bei -44.425 ppm. MS (70 eV): m/e = 264.1(14.5%).

(Me₂Si)₄Se ist farblos, kristallin, luft- und feuchtigkeitsempfindlich und sublimiert bei $63^{\circ}C/5 \times 10^{-3}$ Torr. Analyse: Gef.: C, 30.56; H, 7.52; Si, 36.70; Se, 24.92. C₈H₂₄Si₄Se ber.: C, 30,84; H, 7.76; Si, 36.06; Se, 25.34%. ¹H-NMR (Me₂Si)Se, C₆D₆/TMS: zwei Singuletts, relative Intensität 1/1, δ 0.546 und 0.245 ppm. ²⁹Si-NMR (17.88 MHz): (Me₂Si)₄Se, C₆D₆/TMS extern, Breitbandentkopplung, inversed gated, zwei Singuletts bei δ 5.388 und bei -41.291 ppm. MS (70 eV): m/e = 311.9 (7.7%).

Die angegebenen Daten der IR-, Raman- (s. Tab. 1) und NMR-Spektren bestätigen die vorgeschlagenen Strukturen. Dies gilt auch für die Massenspektren. Der Molekülpeak entspricht jeweils der schwersten auftretenden Masse, dass Isotopenmuster stimmt mit theoretischen Abschätzungen überein. Ein erster Versuch einer Fragmentzuordnung (s. Tab. 2) ergibt für die meisten auftre-

TABELLE 2

MASSENSPEKTREN VON (Me_2Si)₄S UND (Me_2Si)₄Se (Um eine übersichtliche Darstellung zu gewährleisten, wurden nur Massenpeaks mit einer relativen Intensität ab ca. 5% in die Tabelle aufgenommen.)

(Me ₂ Si) ₄ S		(Me ₂ Si) ₄ Se				
Masse	%	Fragment	Masse	%	Fragment	
264.1	14.5	Si ₄ Me ₈ S	311.9	7.7	Si _a Me _a Se	
249.1	13.6	Si ₄ Me ₇ S	296.9	7.4	Si ₄ Me ₇ Se	
205.2	14.1	Si ₃ Me ₅ CH ₂ S	252.9	6.7	Si,Me,CH,Se	
191.2	17.1	Si ₃ Me ₅ S	238.9	4.7	Si, Me, Se	
232.1	10.7	Si Me _s	232.0	94.1	Si ₄ Me ₈	
189.1	34.8	Si ₃ Me ₇	189.1	19.3	Si,Me,	
187.1	4.0	Si_Me,	187.1	6.9	Si,Me,	
174.0	5.9	Si ₃ Me	173.9	9.9	Si_Me	
173.0	7.8	Si,Me,CH.	173.0	21.4	Si,Me,CH,	
			172.1	5.8	Si_Me_	
			170.9	10.7	Si,Me,CH,	
159.1	8.5	Si ₃ Me ₅	159.0	26.7	Si ₃ Me ₅	
			157.1	28.9	Si ₃ Me ₄ CH	
145.2	5.3	Si_Me_CH2	145.0	9.7	Si,Me,CH,	
			142.9	38.2	Si ₃ Me ₃ CH ₂	
131.0	25.5	Si ₂ Me ₅	131.0	31.6	Si ₂ Me ₅	
129.0	5.5	Si ₂ Me ₄ CH	129.0	15.6	Si_Me_CH	
116.1	16.8	Si ₂ Me ₄	116.1	19.0	Si ₂ Me ₄	
115.0	8.1	Si2Me3CH2	115.1	16.4	Si ₂ Me ₃ CH ₂	
101.1	5.7	Si ₂ Me ₃	101.1	12.6	Si ₂ Me ₃	
99.1	4.0	Si ₂ Me ₂ CH	99.0	16.6	Si ₂ Me ₂ CH	
85.1	3.7	Si ₂ MeCH ₂	84.9	6.8	Si ₂ MeCH ₂	
73.1	76.2	SiMe ₃	73.1	100.0	SiMe,	
59.0	13.9	SiMe ₂ H	59.1	24.9	SiMe ₂ H	
45.0	16.9	SiMeH ₂	45.1	27.8	SiMeH ₂	
43.9	5.8	SiMeH	44.0	8.5	SiMeH	
43.0	8.6	SiMe	43.0	15.7	SiMe	
28.0	100.0	Si	28.0	100.0	Si	

tenden Massenpeaks sinnvolle Zusammensetzungen. Die vorgeschlagene Interpretation der auftretenden Massen wird einerseits durch identische Bruchstücke in den Massenpeaks des S- bzw. Se-Derivates (S- bzw. Se freie Bruchstücke) und andererseits durch Bruchstücke mit S und Se erhärtet, die sich genau um die Massendifferenz (Se-S) unterscheiden. Im Spektrum des Se-Derivates sind die Intensitäten der Se-freien Teilchen deutlich erhöht, offensichtlich zerfällt im Massenspektrometer die Si-Se-Bindung wesentlich leichter als die Si-S-Bindung.

Dem Fonds der wissenschaftlichen Forschung, Wien sei für die Bereitstellung von Geräten im Rahmen eines Forschungsprogrammes gedankt, ebenso der Fa. Wacker-Chemie, Burghausen, BRD für die Überlassung von Silan-Derivaten.

Literatur

1 E. Hengge, Properties and Preparation of Si-Si-Linkages, Topics in Current Chemistry, (1974) 51.

2 E. Hengge und H.G. Schuster, J. Organometal. Chem., 186 (1980) C45.

3 K. Hassler, Spectrochimica Acta, A, 37 (1981) 541.

4 M. Wojnowska, W. Wojnowski und R. West, J. Organometal. Chem., 199 (1980) C1.